Three Decades of Oasis Transition and Its Driving Factors in Turpan–Hami Basin in Xinjiang, China: A Complex Network Approach

Author:

Zhang Qinglan12,Yan Min23,Zhang Li23ORCID,Shao Wei24,Chen Yiyang235,Dong Yuqi235

Affiliation:

1. College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541004, China

2. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

3. International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China

4. School of Geomatics and Marine Information, Jiangsu Ocean University, Lianyungang 222001, China

5. University of Chinese Academy of Sciences, Beijing 100094, China

Abstract

As a predominant ecosystem-providing area and distinctive landscape in arid regions, an oasis plays an important role in maintaining land stability, human production, and daily activities. Studying the dynamics of oasis and its driving factors is vital to supporting arid regions’ sustainable development. As a typical mountain–desert–oasis landscape, the Turpan–Hami (Tuha) Basin, located in Xinjiang, China, includes complex interactions among different land types. For this study, we revealed the spatio-temporal patterns and transition processes of the oasis using a complex network method between 1990 and 2020 in the Tuha Basin. In the oasis transition network, the degree value, betweenness centrality, and average path length were calculated to express the transition relationship, key oasis type, and oasis structural stability, respectively. Six factors related to climate change and human actives were selected to investigate the driving forces behind oasis transitions, including the average temperature and precipitation in the growing season, the total power of agricultural machinery (TAMP), the production of raw coal (PRC), the total output value of the plantation industry (TPI), and the population (Pop). Our results show that the oasis area of the Tuha Basin, including the natural oasis and artificial oasis, all grew from 1990 to 2020, with the natural oasis expanding more than the artificial oasis. The transitions between oasis types became more frequent as the area of oasis land types increased throughout the study period. Grassland acted as the most important oasis type in the network, with the highest betweenness centrality, but its importance declined due to the increasing complexity of the oasis transition network from 1990 to 2020. The transitions between oasis types became simpler, and the oasis structural stability decreased. Through driving force analysis, the oasis changes showed a positive correlation with the temperature (p-value < 0.05, r = 0.88), and urbanization and industrialization factors prompted transitions to built-up areas and cropland from grassland and shrubland. In summary, our results suggest that to create a harmonious symbiotic relationship between the natural environment in dryland and human activities, preventing grassland degradation and excessive reclamation of land cover is an available way. Meanwhile, the protection of shrubland and water resources is also important. This study provided reference and theory support for promoting the sustainable development of oases.

Funder

Basic Resource Investigate Project of the Ministry of Science and Technology: Land Resource Carrying Capacity and Ecological Agriculture Investigation and Assessment of Turpan–Hami Basin

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3