Affiliation:
1. College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao 266580, China
Abstract
Accurate estimation of the distribution of POC in the sea surface is an important issue in understanding the carbon cycle at the basin scale in the ocean. This study explores the best machine learning approach to determine the distribution of POC in the ocean surface layer based on data obtained using satellite remote sensing. In order to estimate and verify the accuracy of this method, it is necessary to obtain a large amount of POC data from field observations, so this study was conducted in the Mediterranean Sea, where such data have been obtained and published. The research initially utilizes the Geographic Detector (GD) method to identify spatial correlations between POC and 47 environmental factors in the region. Four machine learning models of a Bayesian optimized random forest (BRF), a backpropagation neural network, adaptive boosting, and extreme gradient boosting were utilized to construct POC assessment models. Model validation yielded that the BRF exhibited superior performance in estimating sea-surface POC. To build a more accurate tuneRanger random forest (TRRF) model, we introduced the tuneRanger R package for further optimization, resulting in an R2 of 0.868, a mean squared error of 1.119 (mg/m3)2, and a mean absolute error of 1.041 mg/m3. It was employed to estimate the surface POC concentrations in the Mediterranean for May and June 2017. Spatial analysis revealed higher concentrations in the west and north and lower concentrations in the east and south, with higher levels near the coast and lower levels far from the coast. Additionally, we deliberated on the impact of human activities on the surface POC in the Mediterranean. This research contributes a high-precision method for satellite retrieval of surface POC concentrations in the Mediterranean, thereby enriching the understanding of POC dynamics in this area.
Funder
Key Laboratory of Land Satellite Remote Sensing Application, Ministry of Natural Resources of the People’s Republic of China
Ministry of Education Industry—University Collaborative Education Project