A Two-Stage Voting-Boosting Technique for Ensemble Learning in Social Network Sentiment Classification

Author:

Cui Su1ORCID,Han Yiliang1ORCID,Duan Yifei2,Li Yu1,Zhu Shuaishuai1,Song Chaoyue1

Affiliation:

1. Department of Electronic Information, Engineering University of Chinese People’s Armed Police Force, Xi’an 710086, China

2. Department of Computer and Information Technology, University of Pennsylvania, Philadelphia, PA 19019, USA

Abstract

In recent years, social network sentiment classification has been extensively researched and applied in various fields, such as opinion monitoring, market analysis, and commodity feedback. The ensemble approach has achieved remarkable results in sentiment classification tasks due to its superior performance. The primary reason behind the success of ensemble methods is the enhanced diversity of the base classifiers. The boosting method employs a sequential ensemble structure to construct diverse data while also utilizing erroneous data by assigning higher weights to misclassified samples in the next training round. However, this method tends to use a sequential ensemble structure, resulting in a long computation time. Conversely, the voting method employs a concurrent ensemble structure to reduce computation time but neglects the utilization of erroneous data. To address this issue, this study combines the advantages of voting and boosting methods and proposes a new two-stage voting boosting (2SVB) concurrent ensemble learning method for social network sentiment classification. This novel method not only establishes a concurrent ensemble framework to decrease computation time but also optimizes the utilization of erroneous data and enhances ensemble performance. To optimize the utilization of erroneous data, a two-stage training approach is implemented. Stage-1 training is performed on the datasets by employing a 3-fold cross-segmentation approach. Stage-2 training is carried out on datasets that have been augmented with the erroneous data predicted by stage 1. To augment the diversity of base classifiers, the training stage employs five pre-trained deep learning (PDL) models with heterogeneous pre-training frameworks as base classifiers. To reduce the computation time, a two-stage concurrent ensemble framework was established. The experimental results demonstrate that the proposed method achieves an F1 score of 0.8942 on the coronavirus tweet sentiment dataset, surpassing other comparable ensemble methods.

Funder

National Natural Science Foundation of China

Innovative Research Team in Engineering University of People’s Armed Police, China

Natural Science Foundation of Shaanxi Province, China

National Social Science Fund of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3