Heavy Metal Content and Pollution Assessment in Typical Check Dam Sediment in a Watershed of Loess Plateau, China

Author:

Meng Yongxia,Li PengORCID,Xiao Lie,Wang Rui,Yang Shutong,Han Jiangxue,Hu Bingze

Abstract

To understand historical trends and assess the ecological risk associated with heavy metal pollution, the concentration of eight species of heavy metals (vanadium (V), chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), zinc (Zn), copper (Cu), and arsenic (As)) in typical silt dam sediments on the Loess Plateau were analyzed. The radionuclide 137Cs was used to quantify rates of erosion, deposition, and heavy metal contamination in the soils of a watershed that supplies a check dam. The sediment record revealed three time periods distinguished by trends in erosion and pollutant accumulation (1960–1967, 1968–1981, and 1985–1991). Heavy metal concentrations were highest but exhibited significant fluctuation in the first two periods (1960–1967 and 1968–1981). From 1985 to 1991, heavy metal pollution showed a downward trend and tended to be stable. The potential risks of heavy metals in silt dam sediments were explored by applying the geo-accumulation index and the potential ecological risk index. The results indicated medium risk associated with Cu and As accumulation, especially in 1963, 1971, and 1986 when the assessed values increased significantly from previous levels. Agricultural practices and high rates of slope erosion may be responsible for the enrichment of As and Cu in soil and the accompanying increase in risk. Land use optimization and the careful use of fertilizers could be used to control or intercept heavy metal pollutants in dammed lands. The results provide the basis for evaluating the current status and ecological risk of heavy metal contamination in dam sediments and for predicting possible heavy metal pollution in the future.

Funder

peng Li

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3