Adding UVA and Far-Red Light to White LED Affects Growth, Morphology, and Phytochemicals of Indoor-Grown Microgreens

Author:

Hooks Triston,Sun Ling,Kong Yun,Masabni Joseph,Niu GenhuaORCID

Abstract

White light emitting diodes (LED) have commonly been used as a sole light source for the indoor production of microgreens. However, the response of microgreens to the inclusion of ultraviolet A (UVA) and/or far-red (FR) light to white LED light remains unknown. To investigate the effects of adding UVA and FR light to white LEDs on plant biomass, height, and the concentrations of phytochemicals, four species of microgreens including basil, cabbage, kale, and kohlrabi were grown under six light treatments. The first three treatments were white LED (control) and two UVA treatments (adding UVA to white LED for the whole growth period or for the last 5 days). Another three treatments consisted of adding FR to the first three treatments. The total photon flux density (TPFD) for all six light treatments was the same. The percentages of UVA and FR photons in the TPFD were 23% and 32%, respectively. Compared to white LEDs, adding UVA throughout the growth period did not affect plant height in all the species except for basil, where 9% reduction was observed regardless of the FR light. On the contrary, the addition of FR light increased plant heights by 9–18% for basil, cabbage, and kohlrabi, regardless of the UVA treatment, compared to white LED. Furthermore, regardless of UVA, adding FR to white LEDs reduced the plant biomass, total phenolic contents, and antioxidant concentrations for at least one species. There was no interaction between FR and UVA on all the above growth and quality traits for all the species. In summary, microgreens were more sensitive to the addition of FR light compared to UVA; however, the addition of FR to white LEDs may reduce yields and phytochemicals in some species.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3