Total Variation-Based Metrics for Assessing Complementarity in Energy Resources Time Series

Author:

Cantor DianaORCID,Ochoa AndrésORCID,Mesa OscarORCID

Abstract

The growing share of intermittent renewable energy sources raised complementarity to a central concept in the electricity supply industry. The straightforward case of two sources suggests that to guarantee supply, the time series of both sources should be negatively correlated. Extrapolation made Pearson’s correlation coefficient (ρ) the most widely used metric to quantify complementarity. This article shows several theoretical and practical drawbacks of correlation coefficients to measure complementarity. Consequently, it proposes three new alternative metrics robust to those drawbacks based on the natural interpretation of the concept: the Total Variation Complementarity Index (ϕ), the Variance Complementarity Index (ϕ′), and the Standard Deviation Complementarity Index (ϕs). We illustrate the use of the three indices by presenting one theoretical and three real case studies: (a) two first-order autoregressive processes, (b) one wind and one hydropower energy time series in Colombia at the daily time resolution, (c) monthly water inflows to two hydropower reservoirs of Colombia with different hydrologic regimes, and (d) monthly water inflows of the 15 largest hydropower reservoirs in Colombia. The conclusion is that ϕ outperforms the use of ρ to quantify complementarity because (i) ϕ takes into account scale, whereas ρ is insensitive to scale; (ii) ρ does not work for more than two sources; (iii) ρ overestimates complementarity; and (iv) ϕ takes into account other characteristics of the series. ϕ′ corrects the scale insensitivity of ρ. Moreover, it works with more than two sources. However, it corrects neither the overestimation nor the importance of other characteristics. ϕs improves ϕ′ concerning the overestimation, but it lets out other series characteristics. Therefore, we recommend total variation complementarity as an integral way of quantifying complementarity.

Funder

National University of Colombia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3