A Novel Adaptive Signal Processing Method Based on Enhanced Empirical Wavelet Transform Technology

Author:

Zhao Huimin,Zuo Shaoyan,Hou Ming,Liu Wei,Yu Ling,Yang Xinhua,Deng Wu

Abstract

Empirical wavelet transform (EWT) is a novel adaptive signal decomposition method, whose main shortcoming is the fact that Fourier segmentation is strongly dependent on the local maxima of the amplitudes of the Fourier spectrum. An enhanced empirical wavelet transform (MSCEWT) based on maximum-minimum length curve method is proposed to realize fault diagnosis of motor bearings. The maximum-minimum length curve method transforms the original vibration signal spectrum to scale space in order to obtain a set of minimum length curves, and find the maximum length curve value in the set of the minimum length curve values for obtaining the number of the spectrum decomposition intervals. The MSCEWT method is used to decompose the vibration signal into a series of intrinsic mode functions (IMFs), which are processed by Hilbert transform. Then the frequency of each component is extracted by power spectrum and compared with the theoretical value of motor bearing fault feature frequency in order to determine and obtain fault diagnosis result. In order to verify the effectiveness of the MSCEWT method for fault diagnosis, the actual motor bearing vibration signals are selected and the empirical mode decomposition (EMD) and ensemble empirical mode decomposition (EEMD) methods are selected for comparative analysis in here. The results show that the maximum-minimum length curve method can enhance EWT method and the MSCEWT method can solve the shortcomings of the Fourier spectrum segmentation and can effectively decompose the bearing vibration signal for obtaining less number of intrinsic mode function (IMF) components than the EMD and EEMD methods. It can effectively extract the fault feature frequency of the motor bearing and realize fault diagnosis. Therefore, the study provides a new method for fault diagnosis of rotating machinery.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3