HARNU-Net: Hierarchical Attention Residual Nested U-Net for Change Detection in Remote Sensing Images

Author:

Li HaojinORCID,Wang LiejunORCID,Cheng ShuliORCID

Abstract

Change detection (CD) is a particularly important task in the field of remote sensing image processing. It is of practical importance for people when making decisions about transitional situations on the Earth’s surface. The existing CD methods focus on the design of feature extraction network, ignoring the strategy fusion and attention enhancement of the extracted features, which will lead to the problems of incomplete boundary of changed area and missing detection of small targets in the final output change map. To overcome the above problems, we proposed a hierarchical attention residual nested U-Net (HARNU-Net) for remote sensing image CD. First, the backbone network is composed of a Siamese network and nested U-Net. We remold the convolution block in nested U-Net and proposed ACON-Relu residual convolution block (A-R), which reduces the missed detection rate of the backbone network in small change areas. Second, this paper proposed the adjacent feature fusion module (AFFM). Based on the adjacency fusion strategy, the module effectively integrates the details and semantic information of multi-level features, so as to realize the feature complementarity and spatial mutual enhancement between adjacent features. Finally, the hierarchical attention residual module (HARM) is proposed, which locally filters and enhances the features in a more fine-grained space to output a much better change map. Adequate experiments on three challenging benchmark public datasets, CDD, LEVIR-CD and BCDD, show that our method outperforms several other state-of-the-art methods and performs excellent in F1, IOU and visual image quality.

Funder

Natural Science Foundation of Xinjiang Uygur Autonomous Region

National Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3