The Wear on Roller Press Rollers Made of 20Cr4/1.7027 Steel under Conditions of Copper Concentrate Briquetting

Author:

Bembenek MichałORCID,Krawczyk Janusz,Pańcikiewicz KrzysztofORCID

Abstract

This paper defines the wear process of rollers made of 20Cr4. Rollers with a diameter of 1000 mm were installed in a roller press used for the production of drop-shaped briquettes and the copper concentrate was briquetted for 1100 h. Three-dimensional (3D) geometry analysis, metallographic analysis, macroscopy, scanning electron microscopy, as well as hardness measurements were performed. It was observed that the working surface was non-uniformly worn. The smallest wear affects the molding cavities situated on the outermost edges of the ring. The wear increases as the center of the ring is approximated, and it reaches its maximum at the middle of the ring. The molding cavities also wear asymmetrically. For the shape considered in this study, the lower part of a cavity is subject to a higher wear rate. We found that the material of the working ring was carburized, but its hardness was significantly lower than required. The roller ring microstructure changes depended on the distance from the cavity’s face. An investigation of the wear mechanisms showed different types of abrasive wear, corrosive processes, and plastic deformation. The exact type and course of wear were described, depending on the location on the working surface.

Publisher

MDPI AG

Subject

General Materials Science

Reference47 articles.

1. An interdisciplinary approach to size enlargement by agglomeration

2. Briquetting;Bizhanov,2020

3. Research and prospects for new areas of using roller presses (Badania i perspektywy nowych obszarów stosowania pras walcowych);Bembenek;Przem. Chem.,2017

4. Research on the process of biomass compaction in the form of straw;Wilczyński,2019

5. Combustion characteristics of fuel briquettes made from charcoal particles and sawdust agglomerates

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3