Abstract
The rapid development of graphene-based nanotechnologies in recent years has drawn extensive attention in environmental applications, especially for water treatment. Three-dimensional graphene-based macrostructures (GBMs) have been considered to be promising materials for practical water purification due to their well-defined porous structure and integrated morphology, and displayed outstanding performance in pollutant abatement with easy recyclability. Three-dimensional GBMs could not only retain the intrinsic priorities of 2D graphene, but also emerge with extraordinary properties by structural manipulation, so rational design and construction of 3D GBMs with desirable microstructures are important to exploit their potential for water treatment. In this review, some important advances in surface modification (chemical doping, wettability, surface charge) and geometrical control (porous structure, oriented arrangement, shape and density) with respect to 3D GBMs have been described, while their applications in water purification including adsorption (organic pollutants, heavy metal ions), catalysis (photocatalysis, Fenton-like advanced oxidation) and capacitive desalination (CDI) are detailly discussed. Finally, future challenges and prospective for 3D GBMs in water purification are proposed.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Subject
Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献