Enhancement of the Catalytic Performance and Operational Stability of Sol-Gel-Entrapped Cellulase by Tailoring the Matrix Structure and Properties

Author:

Vasilescu CorinaORCID,Marc SimonaORCID,Hulka IosifORCID,Paul CristinaORCID

Abstract

Commercial cellulase Cellic CTec2 was immobilized by the entrapment technique in sol–gel matrices, and sol–gel entrapment with deposition onto magnetic nanoparticles, using binary or ternary systems of silane precursors with alkyl- or aryl-trimethoxysilanes, at different molar ratios. Appropriate tailoring of the sol–gel matrix allowed for the enhancement of the catalytic efficiency of the cellulase biocatalyst, which was then evaluated in the hydrolysis reaction of Avicel microcrystalline cellulose. A correlation between the catalytic activity with the properties of the sol–gel matrix of the nanobiocatalysts was observed using several characterization methods: scanning electron microscopy (SEM), fluorescence microscopy (FM), Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA/DTA). The homogeneous distribution of the enzymes in the sol–gel matrix and the mass loss profile as a function of temperature were highlighted. The influence of temperature and pH of the reaction medium on the catalytic performance of the nanobiocatalysts as well as the operational stability under optimized reaction conditions were also investigated; the immobilized biocatalysts proved their superiority in comparison to the native cellulase. The magnetic cellulase biocatalyst with the highest efficiency was reused in seven successive batch hydrolysis cycles of microcrystalline cellulose with remanent activity values that were over 40%, thus we obtained promising results for scaling-up the process.

Funder

Romanian Ministry of Education and Research, CCCDI – UEFISCDI

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3