Ultraviolet Radiation Protective and Anti-Inflammatory Effects of Kaempferia galanga L. Rhizome Oil and Microemulsion: Formulation, Characterization, and Hydrogel Preparation

Author:

Chittasupho ChudaORCID,Ditsri Sakdanai,Singh SudarshanORCID,Kanlayavattanakul Mayuree,Duangnin Natthachai,Ruksiriwanich WarintornORCID,Athikomkulchai Sirivan

Abstract

Long-term UV radiation exposure can induce skin disorders such as cancer and photoallergic reactions. Natural products have been considered as non-irritate and potential sunscreen resources due to their UV absorption and anti-inflammatory activities. This study aimed to evaluate the in vitro ultraviolet radiation protective effect and anti-inflammatory activity of K. galanga rhizome oil and microemulsions. The chemical components of K. galanga rhizome oil was analyzed via gas chromatography coupled with mass spectrometry. Microemulsions containing K. galanga rhizome oil were formulated using a phase-titration method. The microemulsion was characterized for droplet size, polydispersity index, and zeta potential, using a dynamic light-scattering technique. The physical and chemical stability of the microemulsion were evaluated via a dynamic light scattering technique and UV-Vis spectrophotometry, respectively. The UV protection of K. galanga rhizome oil and its microemulsion were investigated using an ultraviolet transmittance analyzer. The protective effect of K. galanga rhizome oil against LPS-induced inflammation was investigated via MTT and nitric oxide inhibitory assays. In addition, a hydrogel containing K. galanga rhizome oil microemulsion was developed, stored for 90 days at 4, 30, and 45 °C, and characterized for viscosity, rheology, and pH. The chemical degradation of the main active compound in the microemulsion was analyzed via UV-Vis spectrophotometry. The formulated O/W microemulsion contained a high loading efficiency (101.24 ± 2.08%) of K. galanga rhizome oil, suggesting a successful delivery system of the oil. The size, polydispersity index, and zeta potential values of the microemulsion were optimized and found to be stable when stored at 4, 30, and 45 °C. K. galanga rhizome oil and microemulsion demonstrated moderate sun protective activity and reduced the nitric oxide production induced by LPS in macrophage cells, indicating that microemulsion containing K. galanga rhizome oil may help protect human skin from UV damage and inflammation. A hydrogel containing K. galanga rhizome oil microemulsion was developed as a topical preparation. The hydrogel showed good physical stability after heating and cooling cycles and long-term storage (3 months) at 4 °C. The use of K. galanga rhizome oil as a natural sun-protective substance may provide a protective effect against inflammation on the skin. K. galanga rhizome oil microemulsion was successfully incorporated into the hydrogel and has the potential to be used as a topical sunscreen preparation.

Funder

Postdoctoral Fellowship for Reinventing University 2022, Chiang Mai University and Office of Research Administration

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3