Dissolution Property of Serpentine Surface and the Effect on Particle–Particle Interaction Behavior in Solution

Author:

Li Zhihang12,Cheng Hongfei1ORCID,Fu Yafeng3ORCID,Zuo Kesheng1,Gao Peng4,Han Yuexin4

Affiliation:

1. School of Earth Science and Resources, Chang’an University, Xi’an 710064, China

2. The State Key Laboratory of Mineral Processing, BGRIMM Technology Group, Beijing 102200, China

3. Ansteel Beijing Research Institute Co., Ltd., Beijing 102200, China

4. School of Resources and Civil Engineering, Northeastern University, Shenyang 110004, China

Abstract

The dissolution property of serpentine and its effect on the interaction between particles are reported here. Dissolution experiments showed that magnesium ions and hydroxyl were removed from the surface after mechanically stirring in solution, leading to the incongruent dissolution of ions. SEM, XPS, and Zeta potential analysis uncovered a significant change in serpentine surface potential and elements distribution after dissolution. Meanwhile, dramatic morphology changes on the surface were observed. A settlement test was carried out to explore the effect of dissolution on particle interaction. The results indicated that the settlement rate rises with increasing pH, but the fine particles had a lower settlement rate, showing the close connection between dissolution and particle interaction. AFM analysis revealed that the interparticle force could be changed because of surface properties at different pH values, leading to different interaction behaviors in the solution. In general, the adhesion force gradually increased and even changed from repulsive to attractive as pH ranged from 4 to 11, reflecting the adhesion behavior among particles in water. Moreover, compared to −45 + 38 μm samples, −38 μm particles are more likely to be kept repulsive in acid solution.

Funder

Open Foundation of State Key Laboratory of Mineral Processing

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference41 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3