Molecular Simulation of Methane Adsorption in Deep Shale Nanopores: Effect of Rock Constituents and Water

Author:

Wu Jianfa12,Yang Xuefeng12,Huang Shan12,Zhao Shengxian12,Zhang Deliang12,Zhang Jian12,Ren Chunyu12,Zhang Chenglin12,Jiang Rui12ORCID,Liu Dongchen12,Yang Qin34,Huang Liang34ORCID

Affiliation:

1. Shale Gas Evaluation and Exploitation Key Laboratory of Sichuan Province, Chengdu 610051, China

2. Shale Gas Research Institute, Southwest Oil & Gas Field Company, PetroChina, Chengdu 610051, China

3. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China

4. College of Energy, Chengdu University of Technology, Chengdu 610059, China

Abstract

The molecular models of nanopores for major rock constituents in deep shale were constructed. The microscopic adsorption behavior of methane was simulated by coupling the grand canonical Monte Carlo and Molecular Dynamics methods and the effect of rock constituents was discussed. Based on the illite and kerogen nanopore models, the discrepancies in microscopic water distribution characteristics were elucidated, the effects of water on methane adsorption and its underlying mechanisms were revealed, and the competitive adsorption characteristics between water and methane were elaborated. The results show a similar trend in the microscopic distribution of methane between different shale rock constituents. Illite and kerogen slit pores have no significant difference in methane adsorption capacity. The adsorption capacity per unit mass of kerogen is greater than that of illite due to the smaller molar mass of the kerogen skeleton and its large intermolecular porosity. Illite has a greater affinity for water than methane. With increasing water content, water molecules preferentially occupy the high-energy adsorption sites and then overspread the entire pore walls to form water adsorption layers. Methane molecules are adsorbed on the water layers, and methane adsorption has little effect on water adsorption. Kerogen is characterized as mix-wetting. Water molecules are preferentially adsorbed on polar functional groups and gather around to form water clusters. In kerogen with high water content, methane adsorption can facilitate water cluster fusion and suppress water spreading along pore walls. In addition to adsorption, some water molecules dissolve in the kerogen matrix.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3