The Paleoproterozoic Evolution of Basement Rocks of the Taebaeksan Basin, Korean Peninsula, and Their Correlation to Those of the Paleoproterozoic Massifs in the Korean Peninsula

Author:

Lee Bo Young1ORCID,Cho Deung-Lyong1,Oh Chang Whan2,Lee Byung Choon3,Lee Seung Hwan1

Affiliation:

1. Geology Division, Korea Institute of Geoscience and Mineral Resources, 124 Gwahak-ro, Yuseong-gu, Daejeon 34132, Republic of Korea

2. Department of Earth and Environmental Sciences, The Earth and Environmental Science System Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea

3. Department of Earth and Environment Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea

Abstract

The Korean Peninsula mainly comprises the Paleoproterozoic Gwanmo, Nangnim, Gyeonggi, and Yeongnam massifs from north to south. The Paleoproterozoic basement is rarely exposed in the Paleozoic Taebaeksan basin, which is located in the northeastern part of the Okcheon belt between the Gyeonggi and Yeongnam massifs. One of the most important issues in the tectonic interpretation of the Korean Peninsula is whether Paleoproterozoic rocks in the Taebaeksan basin have an affinity with those in the Gyeonggi or Yeongnam massifs. To solve this problem, we focused on the petrogenesis of the Imgye gabbroic diorite, Jungbongsan granite, and Jangsan quartzite in the Imgye area of the Taebaeksan basin. The Imgye gabbroic diorite shows mafic to intermediate compositions with slightly enriched LREEs compared to HREEs, slightly positive Rb, K, and Pb anomalies, and negative Ta, Nb, and P anomalies. The Imgye gabbroic diorite formed in a volcanic arc tectonic setting. The geochemical compositions of the Jungbongsan granite show enriched LREEs compared to HREEs with negative Eu anomalies, and reveal strong positive Rb, Th, K, and Pb anomalies with negative Ba, Ta, Nb, Sr, P, Eu, and Ti anomalies. This Jungbongsan granite also formed in an arc tectonic setting like the Imgye gabbroic diorite. LA-ICP-MS zircon age dating of the Imgye gabbroic diorite gives an intrusion age of 1948 ± 21 Ma, whereas SHRIMP U–Pb zircon age dating on the Jungbongsan granite yields an emplacement age of 1873 ± 14 Ma. The εHf(t) values of the Imgye gabbroic diorite are from 3.5 to 9.7, whereas those of the Jungbongsan granite are from −2.9 to 0.6. These data imply that the Imgye gabbroic diorite formed from a depleted mantle in the arc tectonic environment, whereas the Jungbongsan granite formed by reworking pre-existing crust material in the arc environment. The detrital zircons in the Jangsan quartzite show ages ranging from 3.06 to 1.85 Ga, with a peak concentration of ca. 2.5 Ga. Previous studies have suggested that the northern Gyeonggi and Nangnim massifs underwent collision-related magmatism and metamorphism at ca. 1.93–1.90 Ga, and then post-collisional magmatism and metamorphism at ca. 1.89–1.83 Ga, whereas the southern Gyeonggi massif underwent subduction-related magmatism and metamorphism at ca. 1.94–1.92 Ga, and then post-collision-related magmatism and metamorphism at ca. 1.84–1.78 Ga. By contrast, subduction-related events were recognized in the northern Yeongnam massif at ca 2.02–1.96 Ga and 1.90–1.85 Ga. This work, combined with the previous studies, suggests that the Paleoproterozoic basement in the Imgye area of the Taebaeksan basin can be correlated with the Paleoproterozoic basement of the northern Yeongnam massif rather than with those of the Nangnim and Gyeonggi massifs.

Funder

Basic Research Project of the Institute of Geoscience and Mineral Resources

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3