Cu–S Isotopes of the Main Sulfides and Indicative Significance in the Qibaoshan Cu–Au Polymetallic Ore District, Wulian County, Shandong Province, North China Craton

Author:

Sun Yuqin1ORCID,Wang Xin2,Zhang Yan1,Li Dapeng1,Shan Wei1,Geng Ke1,Wei Pengfei1,Liu Qiang1,Xie Wei1,Chi Naijie1

Affiliation:

1. Key Laboratory of Gold Mineralization Processes and Resource Utilization, Ministry of Natural Resources, Shandong Provincial Key Laboratory of Metallogenic Geological Process and Resource Utilization, Shandong Institute of Geological Sciences, Jinan 250013, China

2. Number Eight Institute of Geology and Mineral Resources Exploration of Shandong Province, Rizhao 276826, China

Abstract

With a focus on the Cu isotope geochemistry of chalcopyrite, this paper analyzed the Cu isotope geochemistry of the Qibaoshan crypto-explosive breccia-type Cu–Au polymetallic ore district in Wulian, Shandong Province, North China Craton (NCC). Combined with the results of the in situ sulfur isotope analysis of sulfides, a certain reference and evidence for the study of the genetic mechanism of the epithermal-porphyry Cu polymetallic metallogenic system were provided. The results of the in situ isotope analysis show that the δ34S values of the main sulfides in the Qibaoshan Cu–Au polymetallic ore district range from −6.81‰ to +3.82‰ and are likely to be attributed to the mixing of the derived mantle with the surrounding sedimentary rock assimilation. The ore-forming mechanism may be related to the progressive cooling and transition of the earliest hydrothermal fluids that were dominated by H2S under relatively reducing conditions, followed by a gradual transition from oxidation to reduction. The Cu isotopic composition of the sulfides in ores (δ65Cu = +0.169‰–+0.357‰) decreases with depth, which is likely caused by the upward transport of heavier Cu isotopes. The upper part of the crypto-explosive breccia pipe in the Qibaoshan area may be relatively more gaseous, resulting in the enrichment of δ65Cu. As the gas phase decreases and the liquid phase increases with depth, the δ65Cu value gradually decreases. This indicates the transition from a low-temperature phyllic alteration to a high-temperature K-feldspar alteration. Large, concealed pluton intrusions or orebodies may be present at a depth of the Qibaoshan area. The heavy δ65Cu characteristic is a potential indicator for tracing the fluid activity of the porphyry system and searching for Cu mines. The results provide a reference for the study of the genetic mechanisms of the epithermal-porphyry Cu polymetallic metallogenic system.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Geological Exploration Project of Shandong Province

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3