Characteristics and Geological Significance of High-Frequency Cycles in Salinized Lake Basins: The Paleogene Kumugeliemu Group in the Xinhe Area, Northern Tarim Basin

Author:

Yang Yanru12,Tian Jingchun12,Zhang Xiang12,Li Yingxu3,Zhang Yue12,Xia Qiaoyi12

Affiliation:

1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China

2. State Key Laboratory of Oil and Gas Reservoir Geology and Development Engineering, Chengdu University of Technology, Chengdu 610059, China

3. BGP Inc., China National Petroleum Corporation Southwest Geophysical Institute, Chengdu 610041, China

Abstract

Salinized lake basins have distinctive sedimentary response characteristics, similar to marine shallow-water carbonate platforms. High-frequency cycles can also be used to reveal more sedimentological information, such as relative lake-level fluctuations, lithofacies sequence combinations, and paleogeographic evolution. In this article, a comprehensive study on the stratigraphic shelf delineation and high-frequency cycles of the Paleozoic Kumugeliemu Group in Xinhe area, northern Tarim Basin, was performed using drilling cores, logging curves, and seismic analyses. As a result of the study, the following data were obtained: the three sets of marker beds in the Kumugeliemu Group in the study area could be divided into a bottom sandstone component (E1-2 km1), a lower gypsum mudstone component (E1-2 km2), a salt rock component (E1-2 km3), and an upper gypsum mudstone component (E1-2 km4) by petrology vertical overlay combination and isochronous tracking correlation, which constituted two third-order cycles (ESQ1, ESQ2). They were further divided into seven fourth-order cycles (Esq1–Esq7). Due to the droughty and saline lacustrine depositional system background, the internal rock fabric changed frequently and showed a periodic vertical overlay pattern. Stratified gypsum salt, gypsum mud (sand) rock, and gypsum rock were used as the cycle interface. A single cycle was mainly characterized by an upward shallower depositional sequence of rapid lake transgression followed by a slow lake regression, composed of massive sandstone–lamellar mudstone–lime dolomite–gypsum rock, massive sandstone–lamellar mudstone–gypsum rock (gypsum salt), massive sandstone–massive gypsum mud (sand) rock–gypsum rock, and other cycle structure types. The complete sedimentary cycle was superposed by a single cycle and compared by the inter-well thickness difference, indicating that the study area had a paleogeomorphology pattern of “West-Low–East-High”. The thickness of the cycles decreased gradually from bottom to top vertically, and five sedimentary stages were determined, i.e., freshwater, brackish, brackish water, salt lake, and semi-saltwater, reflecting the evolutionary process of increasing salinity, lake basin filling, and gradual salinization and shrinkage.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference62 articles.

1. A quantitative analysis research on relative lacustrine level changes in the Lower Cretaceous Fuyu reservoir in the Songliao Basin;Lin;J. Stratigr.,2014

2. Oblique Stepwise Rise and Growth of the Tibet Plateau;Tapponnier;Science,2001

3. Geological characteristics of deep carbonate hydrocarbon-bearing pool in the western Yingxiongling area in Qaidam Basi;Zhang;Nat. Gas Geosci.,2018

4. Characteristics of High—frequency Lake—level Fluctuations in the Saline Lacustrine Basin and Its Geological Significance: A case study from the upper member of the Paleogene Lower Ganchaigou Formation in the Yingxi area, Qaidam Basin;Qiao;Acta Sedimentol. Sin.,2020

5. High frequency cycles and paleogeomorphic characteristics of upper member of Lower Ganchaigou Formation in Yingxi area, Qaidam Basin;Guo;Acta Sedimentol. Sin.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3