Chemical and Mineralogical Analysis of Samples Using Combined LIBS, Raman Spectroscopy and µ-EDXRF

Author:

Merk Virginia1ORCID,Berkh Khulan2,Rammlmair Dieter3,Pfeifer Lutz1

Affiliation:

1. LTB Lasertechnik Berlin GmbH, 12489 Berlin, Germany

2. Federal Institute for Geosciences and Natural Resources (BGR), 30655 Hanover, Germany

3. Institute of Mineralogy, Leibniz University Hannover, 30655 Hanover, Germany

Abstract

Energy-dispersive X-ray fluorescence (EDXRF) analysis is one of the standard techniques for the evaluation of mineral deposits. The advantage of EDXRF is the fast delivery of information about the bulk elemental composition as well as the elemental composition of each mineral class. With micro energy-dispersive X-ray fluorescence (µ-EDXRF) analysis, information can be obtained with a micrometer resolution. However, it has some limitations. With EDXRF, light elements (e.g., lithium) cannot be detected, and the count rates for carbon, fluorine and sodium are very low. This might lead to a misinterpretation of the mineral classes and the worth of the deposit. Furthermore, the identification of the alteration phases of primary minerals is ambiguous. Here, we will present an approach to overcome the limitations of µ-EDXRF by complementing it with combined laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy. In contrast to EDXRF, LIBS is able to detect all elements, including light elements. Raman spectroscopy can identify mineral phases and eventually provide additional information on their alterations and modifications. In the present paper, we show results for two different samples covering a certain chemical and mineralogical range that demonstrate the potential of the proposed combination of methods for the chemical and mineralogical analysis of geological samples.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3