Sedimentary Mn Metallogenesis and Coupling among Major Geo-Environmental Events during the Sturtian Glacial–Interglacial Transition

Author:

Liu Liping1,Jiang Zuzhou2,Chu Fengyou1

Affiliation:

1. Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China

2. Construction Administration Bureau of Water Diversion Irrigation Area of Drought Harnessing Letan Reservoir in Central Guangxi, Laibin 546100, China

Abstract

The Sturtian (720–670 Ma) glacial–interglacial transition period was an important interval for sedimentary manganese metallogenesis, including the Mn oxide deposit in the Otjosondu region in Namibia and Mn carbonate deposits in the Datangpo Formation in the south-eastern Yangtze Platform, South China. During this period, Earth experienced the breakup of Rodinia, the Sturtian glaciation, and the Neoproterozoic oxygenation event. In this study, we investigate scenarios that might have provided geologically and geochemically favorable conditions for Mn metallogenesis. In these scenarios, the global recovery of microorganisms enhanced marine primary productivity and O2 levels of the hydrosphere and atmosphere during the Sturtian glacial–interglacial transition. However, the water column was not completely oxidized, maintaining redox stratification. Transgression–regression cycles or O2-rich downwelling drove the exchange of oxygenated topwater and anoxic deep water in rift-related basins that developed due to Rodinia’s breakup. The coupling of these processes precipitated existing dissolved Mn(II) at the margins of basins (Otjosondu region) or at their centers (Yangtze Platform). In the latter case, precursor Mn oxides were further converted into Mn carbonates via the reduction of Mn oxides coupled with organic matter oxidation during early diagenesis. A brief review of Mn metallogenesis in the geological record reveals that Mn metallogenic processes typically occur under geo-environmental conditions that, in concert, produce favorable conditions for Mn sourcing, concentration, and sedimentation.

Funder

Scientific Research Fund of the Second Institute of Oceanography, MNR

China Ocean Mineral Resource R&D Association

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3