Evaluating the Performance of Algorithms in Axillary Microwave Imaging towards Improved Breast Cancer Staging

Author:

Pato Matilde123ORCID,Eleutério Ricardo4,Conceição Raquel C.1ORCID,Godinho Daniela M.1ORCID

Affiliation:

1. Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal

2. Future Internet of Technologies-Lisbon School of Engineering (FIT-ISEL), R. Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal

3. Lisbon School of Engineering (ISEL), R. Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal

4. Physics Department, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal

Abstract

Breast cancer is the most common and the fifth deadliest cancer worldwide. In more advanced stages of cancer, cancer cells metastasize through lymphatic and blood vessels. Currently there is no satisfactory neoadjuvant (i.e., preoperative) diagnosis to assess whether cancer has spread to neighboring Axillary Lymph Nodes (ALN). This paper addresses the use of radar Microwave Imaging (MWI) to detect and determine whether ALNs have been metastasized, presenting an analysis of the performance of different artifact removal and beamformer algorithms in distinct anatomical scenarios. We assess distinct axillary region models and the effect of varying the shape of the skin, muscle and subcutaneous adipose tissue layers on single ALN detection. We also study multiple ALN detection and contrast between healthy and metastasized ALNs. We propose a new beamformer algorithm denominated Channel-Ranked Delay-Multiply-And-Sum (CR-DMAS), which allows the successful detection of ALNs in order to achieve better Signal-to-Clutter Ratio, e.g., with the muscle layer up to 3.07 dB, a Signal-to-Mean Ratio of up to 20.78 dB and a Location Error of 1.58 mm. In multiple target detection, CR-DMAS outperformed other well established beamformers used in the context of breast MWI. Overall, this work provides new insights into the performance of algorithms in axillary MWI.

Funder

Fundação para a Ciência e a Tecnologia—FCT/MEC

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3