FDSS-Based DFT-s-OFDM for 6G Wireless Sensing

Author:

Chen Lu1,Pan Jianxiong23ORCID,Zhang Jing4,Cheng Junfeng4,Xu Luyan5,Ye Neng1ORCID

Affiliation:

1. School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing 100081, China

2. School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China

3. Science and Technology on Communication Networks Laboratory, Shijiazhuang 050081, China

4. China Academy of Electronic and Information Technology, Beijing 100041, China

5. Laboratory of Electromagnetic Space Cognition and Intelligent Control, Beijing 100083, China

Abstract

Integrated sensing and communications (ISAC) is emerging as a key technology of 6G. Owing to the low peak-to-average power ratio (PAPR) property, discrete Fourier transform spread orthogonal frequency-division multiplexing (DFT-s-OFDM) is helpful to improve the sensing range and suitable for high-frequency transmission. However, compared to orthogonal frequency-division multiplexing (OFDM), the sensing accuracy of DFT-s-OFDM is relatively poor. In this paper, frequency-domain spectral shaping (FDSS) is adopted to enhance the performances of DFT-s-OFDM including sensing accuracy and PAPR by adjusting the correlation of signals. Specifically, we first establish a signal model for the ISAC system, followed by the description of performance indicators. Then, we analyze the influence of amplitude fluctuation of frequency domain signals on sensing performance, which shows the design idea of FDSS-enhanced DFT-s-OFDM. Further, a FDSS-enhanced DFT-s-OFDM framework is introduced for ISAC, where two types of FDSS filters including a pre-equalization filter and an isotropic orthogonal transform algorithm (IOTA) filter are designed. The simulation results show that the proposed scheme can obtain about 4 dB performance gain in terms of sensing accuracy over DFT-s-OFDM. In addition, FDSS-enhanced DFT-s-OFDM can significantly reduce PAPR and improve the power amplifier efficiency.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3