Colloid Transport in a Single Fracture–Matrix System: Gravity Effects, Influence of Colloid Size and Density

Author:

Bagalkot Nikhil,Kumar G.

Abstract

A numerical model was developed to investigate the influence of gravitational force on the transport of colloids in a single horizontal fracture–matrix system. Along with major transport phenomena, prominence was given to study the mass flux at the fracture–matrix interface, and colloid penetration within the rock matrix. Results suggest that the gravitational force significantly alters and controls the velocity of colloids in the fracture. Further, it was shown that the colloid density and size play a vital part in determining the extent that gravity may influence the transport of colloids in both fracture and rock matrix. The mass flux transfer across the fracture–matrix interface is predominantly dependent on the colloidal size. As large as 80% reduction in penetration of colloids in the rock matrix was observed when the size of the colloid was increased from 50–600 nm. Similarly, the farther the density of colloid from that of the fluid in the fracture (water), then the higher the mitigation of colloids in the fracture and the rock matrix. Finally, a non-dimensional parameter “Rock Saturation Factor” has been presented in the present study, which can offer a straightforward approach for evaluating the extent of penetration of colloids within the rock matrix.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3