Three-Dimensional Biofilm Electrode Reactors with Polyurethane Sponge Carrier for Highly Efficient Treatment of Pharmaceuticals Wastewater Containing Tetrahydrofuran

Author:

Wang BaoshanORCID,Chen Xiaojie,Xu Yabing,Zhang Zexi,Zhang Yang

Abstract

Three-dimensional biofilm electrode reactors (3D-BERs) exhibit efficacy in the removal of refractory wastewater of pharmaceuticals due to the resistance of pharmaceutical wastewater to biodegradation. In this paper, a new 3D-BER with a polyurethane sponge carrier was applied to the treatment of pharmaceutical wastewater containing tetrahydrofuran (THF) with an objective of exploring the removal efficiency, degradation pathway and main functions of microorganisms of 3D-BERs for wastewater containing THF. The results indicate that when the voltage is 10 V, the highest CODCr removal efficiency is (95.9 ± 1.6)%. Compared to the control group, the removal rate was increased by 21.97 ± 4.69%. The main intermediates of THF, γ-butyrolactone and 4-hydroxybutyric acid, were detected, respectively, by Gas Chromatography–Mass Spectrometry (GC–MS), indicating that 3D-BERs contribute to the degradation of THF with electro-oxidation as well as microbial synergism. Microorganisms, such as Proteobacteria with extracellular electron transfer capacity, Bacteroidetes capable of degrading complex carbon sources and parthenogenic anaerobic bacteria Firmicutes, were found to be enriched by high-throughput sequencing analysis in 3D-BERs, which were conducive to the degradation of refractory pollutants. At the genus level, Chryseobacterium, Brevundimonas, Erysipelothrix, and Desulfovibrio were the main functional genera, whose degradation of THF intermediates was found by functional prediction, mainly through chemoheterotrophy, aerobic chemoheterotrophy, etc. It is to be hoped that this study will provide a solution to the practical treatment of pharmaceutical wastewater containing THF via this new 3D-BER system with a polyurethane sponge carrier.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference52 articles.

1. Insights into current physical, chemical and hybrid technologies used for the treatment of wastewater contaminated with pharmaceuticals;J. Clean. Prod.,2022

2. Performance and extracellular polymers substance analysis of a pilot scale anaerobic membrane bioreactor for treating tetrahydrofuran pharmaceutical wastewater at different HRTs;J. Hazard. Mater.,2017

3. Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria;Bioresour. Technol.,2007

4. Heterocatalytic Fenton oxidation process for the treatment of tannery effluent: Kinetic and thermodynamic studies;Environ. Sci. Pollut. Res.,2012

5. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes;Environ. Int.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3