Dentin, Dentin Graft, and Bone Graft: Microscopic and Spectroscopic Analysis

Author:

Minetti Elio1ORCID,Palermo Andrea2ORCID,Malcangi Giuseppina3ORCID,Inchingolo Alessio Danilo3ORCID,Mancini Antonio3ORCID,Dipalma Gianna3ORCID,Inchingolo Francesco3ORCID,Patano Assunta3ORCID,Inchingolo Angelo Michele3ORCID

Affiliation:

1. Department of Biomedical, Surgical, Dental Science, University of Milan, 20161 Milan, Italy

2. College of Medicine and Dentistry, Birmingham B4 6BN, UK

3. Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy

Abstract

Background: The use of the human dentin matrix could serve as an alternative to autologous, allogenic, and xenogeneic bone grafts. Since 1967, when the osteoinductive characteristics of autogenous demineralized dentin matrix were revealed, autologous tooth grafts have been advocated. The tooth is very similar to the bone and contains many growth factors. The purpose of the present study is to evaluate the similarities and differences between the three samples (dentin, demineralized dentin, and alveolar cortical bone) with the aim of demonstrating that the demineralized dentin can be considered in regenerative surgery as an alternative to the autologous bone. Methods: This in vitro study analyzed the biochemical characterizations of 11 dentin granules (Group A), 11 demineralized using the Tooth Transformer (Group B), and dentin granules and 11 cortical bone granules (Group C) using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) to evaluate mineral content. Atomic percentages of C (carbon), O (oxygen), Ca (calcium), and P (phosphorus) were individually analyzed and compared by the statistical t-test. Results: The significant p-value (p < 0.05) between group A and group C indicated that these two groups were not significantly similar, while the non-significant result (p > 0.05) obtained between group B and group C indicated that these two groups are similar. Conclusions: The findings support that the hypothesis that the demineralization process can lead to the dentin being remarkably similar to the natural bone in terms of their surface chemical composition. The demineralized dentin can therefore be considered an alternative to the autologous bone in regenerative surgery.

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3