HSCVFNT: Inference of Time-Delayed Gene Regulatory Network Based on Complex-Valued Flexible Neural Tree Model

Author:

Yang Bin,Chen Yuehui,Zhang Wei,Lv Jiaguo,Bao Wenzheng,Huang De-Shuang

Abstract

Gene regulatory network (GRN) inference can understand the growth and development of animals and plants, and reveal the mystery of biology. Many computational approaches have been proposed to infer GRN. However, these inference approaches have hardly met the need of modeling, and the reducing redundancy methods based on individual information theory method have bad universality and stability. To overcome the limitations and shortcomings, this thesis proposes a novel algorithm, named HSCVFNT, to infer gene regulatory network with time-delayed regulations by utilizing a hybrid scoring method and complex-valued flexible neural network (CVFNT). The regulations of each target gene can be obtained by iteratively performing HSCVFNT. For each target gene, the HSCVFNT algorithm utilizes a novel scoring method based on time-delayed mutual information (TDMI), time-delayed maximum information coefficient (TDMIC) and time-delayed correlation coefficient (TDCC), to reduce the redundancy of regulatory relationships and obtain the candidate regulatory factor set. Then, the TDCC method is utilized to create time-delayed gene expression time-series matrix. Finally, a complex-valued flexible neural tree model is proposed to infer the time-delayed regulations of each target gene with the time-delayed time-series matrix. Three real time-series expression datasets from (Save Our Soul) SOS DNA repair system in E. coli and Saccharomyces cerevisiae are utilized to evaluate the performance of the HSCVFNT algorithm. As a result, HSCVFNT obtains outstanding F-scores of 0.923, 0.8 and 0.625 for SOS network and (In vivo Reverse-Engineering and Modeling Assessment) IRMA network inference, respectively, which are 5.5%, 14.3% and 72.2% higher than the best performance of other state-of-the-art GRN inference methods and time-delayed methods.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3