Comprehensive Analysis of Cucumber Gibberellin Oxidase Family Genes and Functional Characterization of CsGA20ox1 in Root Development in Arabidopsis

Author:

Sun Hong,Pang Baoya,Yan Jun,Wang Ting,Wang Lina,Chen Chunhua,Li Qiang,Ren ZhonghaiORCID

Abstract

Cucumber (Cucumis sativus L.) is an important vegetable crop worldwide and gibberellins (GAs) play important roles in the regulation of cucumber developmental and growth processes. GA oxidases (GAoxs), which are encoded by different gene subfamilies, are particularly important in regulating bioactive GA levels by catalyzing the later steps in the biosynthetic pathway. Although GAoxs are critical enzymes in GA synthesis pathway, little is known about GAox genes in cucumber, in particular about their evolutionary relationships, expression profiles and biological function. In this study, we identified 17 GAox genes in cucumber genome and classified them into five subfamilies based on a phylogenetic tree, gene structures, and conserved motifs. Synteny analysis indicated that the tandem duplication or segmental duplication events played a minor role in the expansion of cucumber GA2ox, GA3ox and GA7ox gene families. Comparative syntenic analysis combined with phylogenetic analysis provided deep insight into the phylogenetic relationships of CsGAox genes and suggested that protein homology CsGAox are closer to AtGAox than OsGAox. In addition, candidate transcription factors BBR/BPC (BARLEY B RECOMBINANT/BASIC PENTACYSTEINE) and GRAS (GIBBERELLIC ACID-INSENSITIVE, REPRESSOR of GAI, and SCARECROW) which may directly bind promoters of CsGAox genes were predicted. Expression profiles derived from transcriptome data indicated that some CsGAox genes, especially CsGA20ox1, are highly expressed in seedling roots and were down-regulated under GA3 treatment. Ectopic over-expression of CsGA20ox1 in Arabidopsis significantly increased primary root length and lateral root number. Taken together, comprehensive analysis of CsGAoxs would provide a basis for understanding the evolution and function of the CsGAox family.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3