Author:
Manaila Elena,Stelescu Maria,Craciun Gabriela
Abstract
The obtaining and characterization of some environmental-friendly composites that are based on natural rubber and plasticized starch, as filler, are presented. These were obtained by peroxide cross-linking in the presence of a polyfunctional monomer used here as cross-linking co-agent, trimethylolpropane trimethacrylate. The influence of plasticized starch amount on the composites physical and mechanical characteristics, gel fraction and cross-link density, water uptake, structure and morphology before and after accelerated (thermal) degradation, and natural (for one year in temperate climate) ageing, was studied. Differences of two orders of magnitude between the degradation/aging methods were registered in the case of some mechanical characteristics, by increasing the plasticized starch amount. The cross-link density, water uptake and mass loss were also significant affected by the plasticized starch amount increasing and exposing for one year to natural ageing in temperate climate. Based on the results of Fourier Transform Infrared Spectroscopy (FTIR) and cross-link density measurements, reaction mechanisms attributed to degradation induced by accelerated and natural ageing were done. SEM micrographs have confirmed in addition that by incorporating a quantity of hydrophilic starch amount over 20 phr and by exposing the composites to natural ageing, and then degradability can be enhanced by comparing with thermal degradation.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献