Histone Deacetylases Enhance Ca2+-Activated K+ Channel KCa3.1 Expression in Murine Inflammatory CD4+ T Cells

Author:

Matsui Miki,Terasawa Kyoko,Kajikuri Junko,Kito Hiroaki,Endo Kyoko,Jaikhan Pattaporn,Suzuki Takayoshi,Ohya SusumuORCID

Abstract

The up-regulated expression of the Ca2+-activated K+ channel KCa3.1 in inflammatory CD4+ T cells has been implicated in the pathogenesis of inflammatory bowel disease (IBD) through the enhanced production of inflammatory cytokines, such as interferon-γ (IFN-γ). However, the underlying mechanisms have not yet been elucidated. The objective of the present study is to clarify the involvement of histone deacetylases (HDACs) in the up-regulation of KCa3.1 in the CD4+ T cells of IBD model mice. The expression levels of KCa3.1 and its regulators, such as function-modifying molecules and transcription factors, were quantitated using a real-time polymerase chain reaction (PCR) assay, Western blotting, and depolarization responses, which were induced by the selective KCa3.1 blocker TRAM-34 (1 μM) and were measured using a voltage-sensitive fluorescent dye imaging system. The treatment with 1 μM vorinostat, a pan-HDAC inhibitor, for 24 h repressed the transcriptional expression of KCa3.1 in the splenic CD4+ T cells of IBD model mice. Accordingly, TRAM-34-induced depolarization responses were significantly reduced. HDAC2 and HDAC3 were significantly up-regulated in the CD4+ T cells of IBD model mice. The down-regulated expression of KCa3.1 was observed following treatments with the selective inhibitors of HDAC2 and HDAC3. The KCa3.1 K+ channel regulates inflammatory cytokine production in CD4+ T cells, mediating epigenetic modifications by HDAC2 and HDAC3.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3