Elucidating Functions of FleQ in Xanthomonas oryzae pv. oryzae by Comparative Proteomic and Phenotypic Analyses

Author:

Bae Nahee,Park Hye-Jee,Park Hanbi,Kim Minyoung,Do Eunsoo,Han Sang-WookORCID

Abstract

To acclimate to different environments, gene expression has to be controlled using diverse transcriptional activators. FleQ activates σ54-dependent transcription initiation and regulates flagellar biosynthesis and other mechanisms in several bacteria. Xanthomonas oryzae pv. oryzae (Xoo), which is a causal agent of bacterial leaf blight on rice, lacking FleQ loses swimming motility and virulence is not altered. However, other biological mechanisms related with FleQ in Xoo are unknown. In this study, we generated the FleQ-overexpressing strain, Xoo(FleQ), and knockout mutant, XooΔfleQ. To predict the mechanisms affected by FleQ, label-free shotgun comparative proteomics was carried out. Based on proteomic results, we performed diverse phenotypic assays. Xoo(FleQ) had reduced ability to elicit disease symptoms and exopolysaccharide production. Additionally, the ability of XooΔfleQ(EV) (empty vector) and Xoo(FleQ) to form biofilm was decreased. Swarming motility of XooΔfleQ(EV) was abolished, but was only reduced for Xoo(FleQ). Additionally, abnormal twitching motility was observed in both strains. Siderophore production of Xoo(FleQ) was enhanced in iron-rich conditions. The proteomic and phenotypic analyses revealed that FleQ is involved in flagellar-dependent motility and other mechanisms, including symptom development, twitching motility, exopolysaccharide production, biofilm formation, and siderophore production. Thus, this study provides fundamental information about a σ54-dependent transcription activator in Xoo.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3