Abstract
In this study, the adsorption of lignin-modified silica gel after association with six different organophenylmercuric compounds in chloroform was investigated. Adsorption reached approximately 90% of the maximum value within 15 min. The adsorption capacity, Fourier transform infrared spectroscopy, and interaction simulation results indicated that the adsorption proportion resulted from the strong dipole-dipole interaction between the lignin and analyte molecules, and was considered to be size- and structure-dependent. However, the π-π complexation interaction arising from the acidic aromatic moiety of the analyte, which was significant in an apolar environment, was not the major force responsible for the resulting adsorption. Additives, such as acid or ether, which competed with the analyte for the binding site on the lignin molecule, were not beneficial to the interaction, and thus not beneficial to the adsorption processes.
Funder
Ministry of Science and Technology, Taiwan
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献