Leaf-Associated Epiphytic Fungi of Gingko biloba, Pinus bungeana and Sabina chinensis Exhibit Delicate Seasonal Variations

Author:

Bao Lijun,Sun Bo,Liu Jiayu,Zhang Shiwei,Xu NanORCID,Zhang XiaoranORCID,Bohu Tsing,Bai ZhihuiORCID

Abstract

Plant-leaf surface on Earth harbors complex microbial communities that influence plant productivity and health. To gain a detailed understanding of the assembly and key drivers of leaf microbial communities, especially for leaf-associated fungi, we investigated leaf-associated fungal communities in two seasons for three plant species at two sites by high-throughput sequencing. The results reveal a strong impact of growing season and plant species on fungal community composition, exhibiting clear temporal patterns in abundance and diversity. For the deciduous tree Gingko biloba, the number of enriched genera in May was much higher than that in October. The number of enriched genera in the two evergreen trees Pinus bungeana and Sabina chinensis was slightly higher in October than in May. Among the genus-level biomarkers, the abundances of Alternaria, Cladosporium and Filobasidium were significantly higher in October than in May in the three tree species. Additionally, network correlations between the leaf-associated fungi of G. biloba were more complex in May than those in October, containing extra negative associations, which was more obvious than the network correlation changes of leaf-associated fungi of the two evergreen plant species. Overall, the fungal diversity and community composition varied significantly between different growing seasons and host plant species.

Funder

national nature science foundation of China

the Open Project of Key Laboratory of Environmental Biotechnology, CAS

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3