Sign Language Recognition Using Wearable Electronics: Implementing k-Nearest Neighbors with Dynamic Time Warping and Convolutional Neural Network Algorithms

Author:

Saggio GiovanniORCID,Cavallo Pietro,Ricci MariachiaraORCID,Errico VitoORCID,Zea JonathanORCID,Benalcázar Marco E.ORCID

Abstract

We propose a sign language recognition system based on wearable electronics and two different classification algorithms. The wearable electronics were made of a sensory glove and inertial measurement units to gather fingers, wrist, and arm/forearm movements. The classifiers were k-Nearest Neighbors with Dynamic Time Warping (that is a non-parametric method) and Convolutional Neural Networks (that is a parametric method). Ten sign-words were considered from the Italian Sign Language: cose, grazie, maestra, together with words with international meaning such as google, internet, jogging, pizza, television, twitter, and ciao. The signs were repeated one-hundred times each by seven people, five male and two females, aged 29–54 y ± 10.34 (SD). The adopted classifiers performed with an accuracy of 96.6% ± 3.4 (SD) for the k-Nearest Neighbors plus the Dynamic Time Warping and of 98.0% ± 2.0 (SD) for the Convolutional Neural Networks. Our system was made of wearable electronics among the most complete ones, and the classifiers top performed in comparison with other relevant works reported in the literature.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3