Restriction Endonuclease-Based Assays for DNA Detection and Isothermal Exponential Signal Amplification

Author:

Smith Maria,Smith Kenneth,Olstein Alan,Oleinikov Andrew,Ghindilis Andrey

Abstract

Application of restriction endonuclease (REase) enzymes for specific detection of nucleic acids provides for high assay specificity, convenience and low cost. A direct restriction assay format is based on the specific enzymatic cleavage of a target–probe hybrid that is accompanied with the release of a molecular marker into the solution, enabling target quantification. This format has the detection limit in nanomolar range. The assay sensitivity is improved drastically to the attomolar level by implementation of exponential signal amplification that is based on a cascade of self-perpetuating restriction endonuclease reactions. The cascade is started by action of an amplification “trigger”. The trigger is immobilized through a target-specific probe. Upon the target probe hybridization followed with specific cleavage, the trigger is released into the reaction solution. The solution is then added to the assay amplification stage, and the free trigger induces cleavage of amplification probes, thus starting the self-perpetuating cascade of REase-catalyzed events. Continuous cleavage of new amplification probes leads to the exponential release of new triggers and rapid exponential signal amplification. The proposed formats exemplify a valid isothermal alternative to qPCR with similar sensitivity achieved at a fraction of the associated costs, time and labor. Advantages and challenges of the approach are discussed.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3