Wearable Sensor Network for Biomechanical Overload Assessment in Manual Material Handling

Author:

Giannini Paolo,Bassani Giulia,Avizzano Carlo Alberto,Filippeschi AlessandroORCID

Abstract

The assessment of risks due to biomechanical overload in manual material handling is nowadays mainly based on observational methods in which an expert rater visually inspects videos of the working activity. Currently available sensing wearable technologies for motion and muscular activity capture enables to advance the risk assessment by providing reliable, repeatable, and objective measures. However, existing solutions do not address either a full body assessment or the inclusion of measures for the evaluation of the effort. This article proposes a novel system for the assessment of biomechanical overload, capable of covering all areas of ISO 11228, that uses a sensor network composed of inertial measurement units (IMU) and electromyography (EMG) sensors. The proposed method is capable of gathering and processing data from three IMU-based motion capture systems and two EMG capture devices. Data are processed to provide both segmentation of the activity and ergonomic risk score according to the methods reported in the ISO 11228 and the TR 12295. The system has been tested on a challenging outdoor scenario such as lift-on/lift-off of containers on a cargo ship. A comparison of the traditional evaluation method and the proposed one shows the consistency of the proposed system, its time effectiveness, and its potential for deeper analyses that include intra-subject and inter-subjects variability as well as a quantitative biomechanical analysis.

Funder

Istituto Nazionale per l'Assicurazione Contro Gli Infortuni sul Lavoro

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3