Detecting Changes in Impervious Surfaces Using Multi-Sensor Satellite Imagery and Machine Learning Methodology in a Metropolitan Area

Author:

Wu Yuewan12,Pan Jiayi123ORCID

Affiliation:

1. School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China

2. Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Nanchang 330022, China

3. Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Hong Kong, China

Abstract

This study utilizes multi-sensor satellite images and machine learning methodology to analyze urban impervious surfaces, with a particular focus on Nanchang, Jiangxi Province, China. The results indicate that combining multiple optical satellite images (Landsat-8, CBERS-04) with a Synthetic Aperture Radar (SAR) image (Sentinel-1) enhances detection accuracy. The overall accuracy (OA) and kappa coefficients increased from 84.3% to 88.3% and from 89.21% to 92.55%, respectively, compared to the exclusive use of the Landsat-8 image. Notably, the Random Forest algorithm, with its unique dual-random sampling technique for fusing multi-sensor satellite data, outperforms other machine learning methods like Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), Classification and Regression Trees (CARTs), Maximum Likelihood Classification (Max-Likelihood), and Minimum Distance Classification (Min-Distance) in impervious surface extraction efficiency. With additional satellite images from 2015, 2017, and 2020, the impervious surface changes are tracked in the Nanchang metropolitan region. From 2015 to 2021, they record a notable increase in impervious surfaces, signaling a quickened urban expansion. This study observes several impervious surface growth patterns, such as a tendency to concentrate near rivers, and larger areas in the east of Nanchang. While the expansion was mainly southward from 2015 to 2021, by 2021, the growth began spreading northward around the Gan River basin.

Funder

National R&D Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3