Few-Shot High-Resolution Range Profile Ship Target Recognition Based on Task-Specific Meta-Learning with Mixed Training and Meta Embedding

Author:

Kong Yingying1ORCID,Zhang Yuxuan1ORCID,Peng Xiangyang2,Leung Henry3

Affiliation:

1. College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. Nanjing Research Institute of Electronics Engineering, Nanjing 210007, China

3. Department of Electronic and Computer Engineering, University of Calgary, Calgary, AB T2P 2M5, Canada

Abstract

High-resolution range profile (HRRP), characterized by its high availability and rich target structural information, has been extensively studied. However, HRRP-based target recognition methods using closed datasets exhibit limitations when it comes to identifying new classes of targets. The scarcity of samples for new classes leads to overfitting during the deep learning process, and the similarity in the scattering structures of different ships, combined with the significant structural differences among samples of the same ship, contribute to a high level of confusion among targets. To address these challenges, this paper proposed Task-Specific Mate-learning (TSML) for few-shot HRRP. Firstly, a Task-Adaptive Mixed Transfer (TAMT) strategy is proposed, which combines basic learning with meta-learning, to reduce the likelihood of overfitting and enhance adaptability for recognizing new classes of ships. Secondly, a Prototype Network is introduced to enable the recognition of new classes of targets with limited samples. Additionally, a Space-Adjusted Meta Embedding (SAME) is proposed based on the Prototype Network. This embedding function, designed for HRRP data, modifies the distances between samples in meta-tasks by increasing the distances between samples from different ships and decreasing the distances between samples from the same ship. The proposed method is evaluated based on an actual measured HRRP dataset and the experimental results prove that the proposed method can more accurately recognize the unknown ship classes with a small number of labels by learning the known classes of ships. In addition, the method has a degree of robustness to the number of training samples and a certain generalization ability, which can produce improved results when applied to other backbones.

Funder

Program of Remote Sensing Intelligent Monitoring and Emergency Services for Regional Security Elements

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu

Aeronautical Science Foundation of China

Basic Research

National Science and Technology Major Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3