Research on Reliable Long-Baseline NRTK Positioning Method Considering Ionospheric Residual Interpolation Uncertainty

Author:

Liu Hao1,Gao Wang12,Miao Weiwei3,Pan Shuguo12,Meng Xiaolin1,Qiao Longlei1

Affiliation:

1. School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China

2. Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Southeast University, Nanjing 210096, China

3. Information and Telecommunication Branch, State Grid Jiangsu Electric Power Company, Nanjing 210024, China

Abstract

In the past few decades, network real-time kinematic (NRTK) positioning technology has developed rapidly. Generally, in the continuously operating reference stations (CORS) network, within a moderate baseline length, e.g., 80–100 km, atmospheric delay can be effectively processed through regional modeling and, thus, can support almost instantaneous centimeter-level NRTK positioning. However, in long-baseline CORS networks, especially during the active period of the ionosphere, ionospheric delays cannot be fully eliminated through modeling, leading to decreased NRTK positioning accuracy. To address this issue, this study proposes a long-baseline NRTK positioning method considering ionospheric residual interpolation uncertainty (IRIU). The method utilizes the ionospheric residual interpolation standard deviation (IRISTD) calculated during atmospheric delay modeling, then fits an IRISTD-related stochastic model through the fitting of the absolute values of the ionospheric delay modeling residuals and IRISTD. Finally, based on the ionosphere-weighted model, the IRISTD processed by the stochastic model is used to constrain the ionospheric pseudo-observations. This method achieves good comprehensive performance in handling ionospheric delay and model strength, and the advantage is validated through experiments using CORS data with baseline lengths ranging from 54 km to 106 km in western China and from 84 km to 180 km in AUSCORS data. Quantitative results demonstrate that, across the three sets of experiments, the proposed ionosphere-weighted model achieves an average increase in the fixed rate of 16.9% compared to the ionosphere-fixed model and 25.6% compared to the ionosphere-float model. In terms of positioning accuracy, the proposed model yields average improvements of 67.4%, 76.4%, and 66.0% in the N/E/U directions, respectively, compared to the ionosphere-fixed model, and average improvements of 21.0%, 32.0%, and 24.4%, respectively, compared to the ionosphere-float model. Overall, the proposed method can achieve better NRTK positioning performance in situations where ionospheric delay modeling is inaccurate, such as long baselines and ionospheric activity.

Funder

Science and Technology Project of State Grid

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3