High-Resolution Real-Time Coastline Detection Using GNSS RTK, Optical, and Thermal SfM Photogrammetric Data in the Po River Delta, Italy

Author:

Fabris Massimo1ORCID,Balin Mirco2,Monego Michele1ORCID

Affiliation:

1. Department of Civil, Environmental and Architectural Engineering, University of Padua, 35131 Padua, Italy

2. Brenta Lavori srl, 35010 Vigonza, Italy

Abstract

High-resolution coastline detection and monitoring are challenging on a global scale, especially in flat areas where natural events, sea level rise, and anthropic activities constantly modify the coastal environment. While the coastline related to the 0-level contour line can be extracted from accurate Digital Terrain Models (DTMs), the detection of the real-time, instantaneous coastline, especially at low tide, is a challenge that warrants further study and evaluation. In order to investigate an efficient combination of methods that allows to contribute to the knowledge in this field, this work uses topographic total station measurements, Global Navigation Satellite System Real-Time Kinematic (GNSS RTK) technique, and the Structure from Motion (SfM) approach (using a low-cost drone equipped with optical and thermal cameras). All the data were acquired at the beginning of 2022 and refer to the areas of Boccasette and Barricata, in the Po River Delta (Northeastern of Italy). The real-time coastline obtained from the GNSS data was validated using the topographic total station measurements; the correspondent polylines obtained from the photogrammetric data (using both automatic extraction and manual restitutions by visual inspection of orhophotos) were compared with the GNSS data to evaluate the performances of the different techniques. The results provided good agreement between the real-time coastlines obtained from different approaches. However, using the optical images, the accuracy was strictly connected with the radiometric changes in the photos and using thermal images, both manual and automatic polylines provided differences in the order of 1–2 m. Multi-temporal comparison of the 0-level coastline with those obtained from a LiDAR survey performed in 2018 provided the detection of the erosion and accretion areas in the period 2018–2022. The investigation on the two case studies showed a better accuracy of the GNSS RTK method in the real-time coastline detection. It can be considered as reliable ground-truth reference for the evaluation of the photogrammetric coastlines. While GNSS RTK proved to be more productive and efficient, optical and thermal SfM provided better results in terms of morphological completeness of the data.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3