A Generative Adversarial and Spatiotemporal Differential Fusion Method in Radar Echo Extrapolation

Author:

Niu Xianghua1,Zhang Lixia2,Wang Chunlin34,Shen Kailing34,Tian Wei34ORCID,Liao Bin1

Affiliation:

1. State Key Laboratory of Geo-Information Engineering, Xi’an 710054, China

2. Shijiazhuang Meteorological Bureau, Shijiazhuang 050081, China

3. School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, China

4. Engineering Research Center of Digital Forensics, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

As an important part of remote sensing data, weather radar plays an important role in convective weather forecasts to reduce extreme precipitation disasters. The existing radar echo extrapolation methods do not utilize the local natural characteristics of the radar echo effectively but only roughly extract the whole characteristics of the radar echo. To address these challenges, we design a spatiotemporal difference and generative adversarial fusion model (STDGAN). Specifically, a spatiotemporal difference module (STD) is designed to extract local weather patterns and model them in detail. In our model, spatiotemporal difference information and spatiotemporal features captured by the model itself are fused together. In addition, our model is trained in a generative adversarial network (GAN) framework; it helps to generate a clearer map of future radar echoes at the image level. The discriminator consists of multi-scale feature extractors, which can simulate weather models of various scales more completely. Finally, extrapolation experiments were conducted using actual radar echo data from Shijiazhuang and Nanjing. The experiments have shown that our model has a more accurate prediction performance for predicting local weather patterns and overall echo change trajectories compared with previous research models. Our model achieved MSE, PSNE, and SSIM values of 132.22, 37.87, and 0.796, respectively, on the Shijiazhuang radar echo dataset. In addition, our model also showed better performance results on the Nanjing radar echo dataset. The results show that the MSE was 49.570, the PSNR was 0.714, and the SSIM was 30.633. The CC value was 0.855.

Funder

State Key Laboratory of Geo-Information Engineering

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3