Pleasantness Recognition Induced by Different Odor Concentrations Using Olfactory Electroencephalogram Signals

Author:

Hou Hui-Rang,Han Rui-Xue,Zhang Xiao-Nei,Meng Qing-Hao

Abstract

Olfactory-induced emotion plays an important role in communication, decision-making, multimedia, and disorder treatment. Using electroencephalogram (EEG) technology, this paper focuses on (1) exploring the possibility of recognizing pleasantness induced by different concentrations of odors, (2) finding the EEG rhythm wave that is most suitable for the recognition of different odor concentrations, (3) analyzing recognition accuracies with concentration changes, and (4) selecting a suitable classifier for this classification task. To explore these issues, first, emotions induced by five different concentrations of rose or rotten odors are divided into five kinds of pleasantness by averaging subjective evaluation scores. Then, the power spectral density features of EEG signals and support vector machine (SVM) are used for classification tasks. Classification results on the EEG signals collected from 13 participants show that for pleasantness recognition induced by pleasant or disgusting odor concentrations, considerable average classification accuracies of 93.5% or 92.2% are obtained, respectively. The results indicate that (1) using EEG technology, pleasantness recognition induced by different odor concentrations is possible; (2) gamma frequency band outperformed other EEG rhythm-based frequency bands in terms of classification accuracy, and as the maximum frequency of the EEG spectrum increases, the pleasantness classification accuracy gradually increases; (3) for both rose and rotten odors, the highest concentration obtains the best classification accuracy, followed by the lowest concentration.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3