An Analysis, Numerical Modeling and Experimental Verification of Low-Temperature Thermofoil Heaters

Author:

Dimitrov BorislavORCID

Abstract

In this paper, an analysis of the geometry, numerical modeling, and experimental verification of thermofoil heaters for low-temperature applications is presented. The research suggests a calculation procedure of the thermofoil traces’ geometry, comprising the necessary electrical and thermal parameters in order for the characteristics of the heater to be fully defined according to the stipulated conditions required. The derived heaters’ geometry analysis procedure is depicted with two case studies, giving the sequence of the necessary calculations and their applications as part of a design task. Its continuation, the design approach, is developed with numerical modeling, based on Finite Element Methods (FEM) used for multiphysics simulations, including the thermal and electrical heaters parameters. The realized 3D models are used to depict the uniformity of the thermal field in the system heatsink-thermofoil heater. The results from analysis, modeling, and simulations are tested experimentally. The suggested geometry analysis and modeling approach are experimentally verified. The final results demonstrate satisfactory precision with a simulation–experiment mismatch in a range of 5–7%. As a vital product of experimental research, the maximum power density for the studied thermofoil heaters is derived for a range of temperatures and material characteristics.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3