More Buildings Make More Generalizable Models—Benchmarking Prediction Methods on Open Electrical Meter Data

Author:

Miller ClaytonORCID

Abstract

Prediction is a common machine learning (ML) technique used on building energy consumption data. This process is valuable for anomaly detection, load profile-based building control and measurement and verification procedures. Hundreds of building energy prediction techniques have been developed over the last three decades, yet there is still no consensus on which techniques are the most effective for various building types. In addition, many of the techniques developed are not publicly available to the general research community. This paper outlines a library of open-source regression techniques from the Scikit-Learn Python library and describes the process of applying them to open hourly electrical meter data from 482 non-residential buildings from the Building Data Genome Project. The results illustrate that there are several techniques, notably decision tree-based models, that perform well on two-thirds of the total cohort of buildings. However, over one-third of the buildings, specifically primary schools, performed poorly. This example implementation shows that there is no one size-fits-all modeling solution and that various types of temporal behavior are difficult to capture using machine learning. An analysis of the generalizability of the models tested motivates the need for the application of future techniques to a board range of building types and behaviors. The importance of this type of scalability analysis is discussed in the context of the growth of energy meter and other Internet-of-Things (IoT) data streams in the built environment. This framework is designed to be an example baseline implementation for other building energy data prediction methods as applied to a larger population of buildings. For reproducibility, the entire code base and data sets are found on Github.

Publisher

MDPI AG

Subject

General Economics, Econometrics and Finance

Reference50 articles.

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3