A CNN-BiLSTM Model for Document-Level Sentiment Analysis

Author:

Rhanoui MaryemORCID,Mikram MouniaORCID,Yousfi SihamORCID,Barzali Soukaina

Abstract

Document-level sentiment analysis is a challenging task given the large size of the text, which leads to an abundance of words and opinions, at times contradictory, in the same document. This analysis is particularly useful in analyzing press articles and blog posts about a particular product or company, and it requires a high concentration, especially when the topic being discussed is sensitive. Nevertheless, most existing models and techniques are designed to process short text from social networks and collaborative platforms. In this paper, we propose a combination of Convolutional Neural Networks (CNN) and Bidirectional Long Short-Term Memory (BiLSTM) models, with Doc2vec embedding, suitable for opinion analysis in long texts. The CNN-BiLSTM model is compared with CNN, LSTM, BiLSTM and CNN-LSTM models with Word2vec/Doc2vec embeddings. The Doc2vec with CNN-BiLSTM model was applied on French newspapers articles and outperformed the other models with 90.66% accuracy.

Publisher

MDPI AG

Subject

General Economics, Econometrics and Finance

Reference50 articles.

1. Sentiment Analysis and Opinion Mining

2. Convolutional Neural Networks for Sentence Classification;Kim,2014

3. Comparative study of CNN and RNN for natural language processing;Yin;arXiv,2017

Cited by 170 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI-Driven Model for Contract Law Cases;International Journal of Latest Technology in Engineering Management & Applied Science;2024-08-20

2. X-News dataset for online news categorization;International Journal of Intelligent Computing and Cybernetics;2024-08-13

3. Bengali fake reviews: A benchmark dataset and detection system;Neurocomputing;2024-08

4. CommentClass: A Robust Ensemble Machine Learning Model for Comment Classification;International Journal of Computational Intelligence Systems;2024-07-15

5. Effectiveness of Deep Learning Methods CNN - Bi-LSTM and GloVe in Sentiment Analysis of MyTelkomsel Application Reviews;2024 International Conference on Data Science and Its Applications (ICoDSA);2024-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3