Affiliation:
1. School of Computer Sciences, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
Abstract
Alzheimer’s Disease (AD) is becoming increasingly prevalent across the globe, and various diagnostic and detection methods have been developed in recent years. Several techniques are available, including Automatic Pipeline Methods and Machine Learning Methods that utilize Biomarker Methods, Fusion, and Registration for multimodality, to pre-process medical scans. The use of automated pipelines and machine learning systems has proven beneficial in accurately identifying AD and its stages, with a success rate of over 95% for single and binary class classifications. However, there are still challenges in multi-class classification, such as distinguishing between AD and MCI, as well as sub-stages of MCI. The research also emphasizes the significance of using multi-modality approaches for effective validation in detecting AD and its stages.
Subject
General Materials Science
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献