316L Stainless Steel Thin-Walled Parts Hybrid-Layered Manufacturing Process Study

Author:

Wu Xuefeng1ORCID,Su Chentao1,Zhang Kaiyue1

Affiliation:

1. School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin 150080, China

Abstract

Additive manufacturing technology overcomes the limitations imposed by traditional manufacturing techniques, such as fixtures, tools, and molds, thereby enabling a high degree of design freedom for parts and attracting significant attention. Combined with subtractive manufacturing technology, additive and subtractive hybrid manufacturing (ASHM) has the potential to enhance surface quality and machining accuracy. This paper proposes a method for simulating the additive and subtractive manufacturing process, enabling accurate deformation prediction during processing. The relationship between stress distribution and thermal stress deformation of thin-walled 316L stainless steel parts prepared by Laser Metal Deposition (LMD) was investigated using linear scanning with a laser displacement sensor and finite element simulation. The changes in stress and deformation of these thin-walled parts after milling were also examined. Firstly, 316L stainless steel box-shaped thin-walled parts were fabricated using additive manufacturing, and the profile information was measured using a Micro Laser Displacement Sensor. Then, finite element software was employed to simulate the stress and deformation of the box-shaped thin-walled part during the additive manufacturing process. The experiments mentioned were conducted to validate the finite element model. Finally, based on the simulation of the box-shaped part, a simulation prediction was made for the box-shaped thin-walled parts produced by two-stage additive and subtractive manufacturing. The results show that the deformation tendency of outward twisting and expanding occurs in the additive process to the box-shaped thin-walled part, and the deformation increases gradually with the increase of the height. Meanwhile, the milling process is significant for improving the surface quality and dimensional accuracy of the additive parts. The research process and results of the thesis have laid the foundation for further research on the influence of subtractive process parameters on the surface quality of 316L stainless steel additive parts and subsequent additive and subtractive hybrid manufacturing of complex parts.

Funder

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3