A Study on the 3D Deformation Behavior of Porous PDMS Flexible Electronic Composite Films Stretched under Different Temperatures

Author:

Chen Cheng1,Li Ziyun1,Wang Yanlai1,Zhang Ze1,Ren Chunhua1

Affiliation:

1. School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China

Abstract

Flexible electronic films need to be applied in different ambient temperatures. The porous substrate of the composite film enhances air permeability. The lifespan of these composite films is significantly affected by variations in temperature and substrate porosity. To explore the impact of temperature and porosity on the performance of composite films, we developed a 3D deformation detection system utilizing the advanced three-dimensional digital image correlation (3D-DIC) method. This system enabled us to observe and analyze the 3D deformation behaviors of porous polydimethylsiloxane (PDMS) flexible composite films when they are subjected to uniaxial stretching at different temperatures. We proposed employing two parameters, namely the strain fluctuation coefficient (M) and off-plane displacement (w), to characterize the 3D deformation of the films. This holistic characterization of deformation through the combined utilization of parameters M and w held greater significance for composite films compared to the conventional practice of solely measuring mechanical properties like the elastic modulus. Through experimental analysis, we discovered that as the temperature increased, the M value of the film decreased while the w value increased for the same stretching distance. Furthermore, the porosity of the composite film depended on the doping mass ratio of PDMS to deionized water during the fabrication process. Specifically, when the ratio was set at 6:1, the composite film exhibited the smallest M value and w value, and the highest air permeability. Additionally, the 3D deformation behavior remained stable across different temperatures for this specific ratio. Moreover, our findings unveiled a remarkable association between the parameter w and the resistance value of the device. These findings provide valuable insights for optimizing the fabrication process of porous PDMS flexible electronic composite films.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3