A Route to Understanding the Ethane Adsorption Selectivity of the Zeolitic Imidazolate Framework-8 in Ethane–Ethylene Mixtures

Author:

Vargas-Bustamante Jaquebet1,Salcedo Roberto1,Balmaseda Jorge1ORCID

Affiliation:

1. Departamento de Polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico

Abstract

Ethylene production has a negative environmental impact, with its separation step being one of the major contributors of pollution. This has encouraged the search for energy-efficient alternatives, among which the adsorptive separation of ethane and ethylene stands out. ZIF-8 is a molecular sieve that is potentially useful for this purpose. It is selective to ethane, an exceptional property that remains unexplained. Furthermore, the adsorption of ethane and ethylene above room temperature, such as at steam cracking process outlet temperatures, has not been addressed either. This work aims to fill this knowledge gap by combining experiments at very low volumetric fillings with density–functional theory modelling methods. Adsorption isotherms of ethane and ethylene on ZIF-8 at pressures below 0.3 bar and 311 K, 333 K, and 363 K were measured using zero-length column chromatography. The low-pressure domain of the isotherms contains information on the interactions between the adsorbate molecules and the adsorbent. This favors the understanding of their macroscopic behavior from simulations at the atomic level. The isosteric enthalpy of adsorption of ethane remained constant at approximately −10 kJ/mol. In contrast, the isosteric enthalpy of adsorption of ethylene decreased from −4 kJ/mol to values akin to those of ethane as temperature increased. ZIF-8 selectivity to ethane, estimated from ideal adsorbed solution theory, decreased from 2.8 to 2.0 with increasing pressure up to 0.19 bar. Quantum mechanical modelling suggested that ethylene had minimal interactions with ZIF-8, while ethane formed hydrogen bonds with nitrogen atoms within its structure. The findings of this research are a platform for designing new systems for the adsorptive separation of ethane and ethylene and thus, reducing the environmental impact of ethylene production.

Funder

DGAPA-UNAM

Consejo Nacional de Ciencia y Tecnología

Publisher

MDPI AG

Subject

General Materials Science

Reference43 articles.

1. Zeolites in Adsorption Process: State of the Art and Future Prospects;Valencia;Chem. Rev.,2022

2. Nitrogen–Doped ultrahigh Microporous Carbons Derived from Two Nitrogen-Containing Post–Cross–Linked Polymers for Efficient CO2 Capture;Shao;J. Chem. Eng.,2020

3. Adsoprtion of CO2, CH4, and N2 on Ordered Mesoporous Carbon: Approach for Greenhouse Gases Capture and Biogas Upgrading;Yuan;Environ. Sci. Technol.,2013

4. Gas Separation by Adsorption: Technological Drivers and Opportunities for Improvement;Pullumbi;Curr. Opin. Chem. Eng.,2019

5. Economic Estimation of Various Membranes and Distillation for Propylene and Propane Separation;Amedi;Ind. Eng. Chem. Res.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3