Solid-State Processing of CoCrMoNbTi High-Entropy Alloy for Biomedical Applications

Author:

Bololoi Alina Elena1,Geambazu Laura Elena12ORCID,Antoniac Iulian Vasile1ORCID,Bololoi Robert Viorel1,Manea Ciprian Alexandru12ORCID,Cojocaru Vasile Dănuţ1ORCID,Pătroi Delia2ORCID

Affiliation:

1. Materials Science and Engineering Faculty, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania

2. National Institute for R&D in Electrical Engineering ICPE-CA Bucharest, Splaiul Unirii 313, 030138 Bucharest, Romania

Abstract

High-entropy alloys (HEAs) gained interest in the field of biomedical applications due to their unique effects and to the combination of the properties of the constituent elements. In addition to the required property of biocompatibility, other requirements include properties such as mechanical resistance, bioactivity, sterility, stability, cost effectiveness, etc. For this paper, a biocompatible high-entropy alloy, defined as bio-HEA by the literature, can be considered as an alternative to the market-available materials due to their superior properties. According to the calculation of the valence electron concentration, a majority of body-centered cubic (BCC) phases were expected, resulting in properties such as high strength and plasticity for the studied alloy, confirmed by the XRD analysis. The tetragonal (TVC) phase was also identified, indicating that the presence of face-centered cubic (FCC) phases in the alloyed materials resulted in high ductility. Microstructural and compositional analyses revealed refined and uniform metallic powder particles, with a homogeneous distribution of the elemental particles observed from the mapping analyses, indicating that alloying had occurred. The technological characterization of the high-entropy alloy-elaborated powder revealed the particle dimension reduction due to the welding and fracturing process that occurs during mechanical alloying, with a calculated average particle size of 45.12 µm.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3