Abstract
A graph is even (resp. odd) if all its vertex degrees are even (resp. odd). We consider edge coverings by prescribed number of even and/or odd subgraphs. In view of the 8-Flow Theorem, a graph admits a covering by three even subgraphs if and only if it is bridgeless. Coverability by three odd subgraphs has been characterized recently [Petruševski, M.; Škrekovski, R. Coverability of graph by three odd subgraphs. J. Graph Theory 2019, 92, 304–321]. It is not hard to argue that every acyclic graph can be decomposed into two odd subgraphs, which implies that every graph admits a decomposition into two odd subgraphs and one even subgraph. Here, we prove that every 3-edge-connected graph is coverable by two even subgraphs and one odd subgraph. The result is sharp in terms of edge-connectivity. We also discuss coverability by more than three parity regular subgraphs, and prove that it can be efficiently decided whether a given instance of such covering exists. Moreover, we deduce here a polynomial time algorithm which determines whether a given set of edges extends to an odd subgraph. Finally, we share some thoughts on coverability by two subgraphs and conclude with two conjectures.
Funder
Javna Agencija za Raziskovalno Dejavnost RS
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)