On High-Order Iterative Schemes for the Matrix pth Root Avoiding the Use of Inverses

Author:

Amat Sergio,Busquier Sonia,Hernández-Verón Miguel ÁngelORCID,Magreñán Ángel AlbertoORCID

Abstract

This paper is devoted to the approximation of matrix pth roots. We present and analyze a family of algorithms free of inverses. The method is a combination of two families of iterative methods. The first one gives an approximation of the matrix inverse. The second family computes, using the first method, an approximation of the matrix pth root. We analyze the computational cost and the convergence of this family of methods. Finally, we introduce several numerical examples in order to check the performance of this combination of schemes. We conclude that the method without inverse emerges as a good alternative since a similar numerical behavior with smaller computational cost is obtained.

Funder

Fundación Séneca

Ministerio de Economía y Competitividad

Ministerio de Ciencia, Innovación y Universidades

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference15 articles.

1. Newton’s method for the matrix square root;Higham;Math. Comp.,1986

2. On the Newton Method for the Matrix Pth Root

3. A Schur–Newton Method for the Matrix \lowercase{\boldmathp}th Root and its Inverse

4. A note on computing the matrix square root

5. A modified Newton method for obtaining roots of matrices;Petkov;Annu. Univ. Sofia Fac. Math.,1974

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploiting a higher‐order scheme for matrix square root and its inverse simultaneously;Mathematical Methods in the Applied Sciences;2022-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3